Repeated Games
Exported
Games.RepeatedGame
— Type.RepeatedGame{N,T}
Type representing an N-player repeated game.
Fields
sg::NormalFormGame{N, T}
: The stage game used to create the repeated game.delta::Float64
: The common discount rate at which all players discount the future.
Games.RepeatedGame
— Method.RepeatedGame(p1, p2, delta)
Helper constructor that builds a repeated game for two players.
Arguments
p1::Player
: The first player.p2::Player
: The second player.delta::Float64
: The common discount rate at which all players discount the future.
Returns
::RepeatedGame
: The repeated game.
Games.outerapproximation
— Method.outerapproximation(rpd; nH=32, tol=1e-8, maxiter=500, check_pure_nash=true,
verbose=false, nskipprint=50,
plib=default_library(2, Float64),
lp_solver=() -> Clp.Optimizer(LogLevel=0))
Approximates the set of equilibrium values for a repeated game with the outer hyperplane approximation described by Judd, Yeltekin, Conklin (2002).
Arguments
rpd::RepGame2
: Two player repeated game.nH::Int
: Number of subgradients used for the approximation.tol::Float64
: Tolerance in differences of set.maxiter::Int
: Maximum number of iterations.check_pure_nash
: Whether to perform a check about whether a pure Nash equilibrium exists.verbose::Bool
: Whether to display updates about iterations and distance.nskipprint::Int
: Number of iterations between printing information (assuming verbose=true).plib::Polyhedra.Library
: Allows users to choose a particular package for the geometry computations. (See Polyhedra.jl docs for more info). By default, it chooses to usePolyhedra.DefaultLibrary
.lp_solver::Union{<:Type{MathOptInterface.AbstractOptimizer},Function}
: Linear programming solver to be used internally. Pass aMathOptInterface.AbstractOptimizer
type (such asClp.Optimizer
) if no option is needed, or a function (such as() -> Clp.Optimizer(LogLevel=0)
) to supply options.
Returns
vertices::Matrix{Float64}
: Vertices of the outer approximation of the value set.
Games.unpack
— Method.unpack(rpd)
Helper function that unpacks the elements of a repeated game.
Arguments
rpd::RepeatedGame
: The repeated game.
Returns
::Tuple{NormalFormGame, Float64}
: A tuple containing the stage game and the delta.
Games.worst_value_1
— Method.See worst_value_i
for documentation
Games.worst_value_2
— Method.See worst_value_i
for documentation
Games.worst_value_i
— Method.worst_value_i(rpd, H, C, i)
Given a constraint w ∈ W, this finds the worst possible payoff for agent i.
Arguments
rpd::RepGame2
: Two player repeated game.H::Matrix{Float64}
: Matrix of shape(nH, 2)
containing the subgradients herenH
is the number of subgradients.C::Vector{Float64}
: The array containing the hyperplane levels.i::Int
: The player of interest.lp_solver::Union{Type{<:MathOptInterface.AbstractOptimizer},Function}
: Linear programming solver to be used internally. Pass aMathOptInterface.AbstractOptimizer
type (such asClp.Optimizer
) if no option is needed, or a function (such as() -> Clp.Optimizer(LogLevel=0)
) to supply options.
Returns
out::Float64
: Worst possible payoff for player i.
Internal
Games.RepGame2
— Type.RepGame2
Type representing a 2-player repeated game; alias for RepeatedGame{2}
.
Games.initialize_LP_matrices
— Method.initialize_LP_matrices(rpd, H)
Initialize matrices for the linear programming problems.
Arguments
rpd::RepeatedGame
: Two player repeated game.H::Matrix{Float64}
: Matrix of shape(nH, 2)
containing the subgradients used to approximate the value set, wherenH
is the number of subgradients.
Returns
c::Vector{Float64}
: Vector of lengthnH
used to determine which subgradient should be used, wherenH
is the number of subgradients.A::Matrix{Float64}
: Matrix of shape(nH+2, 2)
with nH set constraints and to be filled with 2 additional incentive compatibility constraints.b::Vector{Float64}
: Vector of lengthnH+2
to be filled with the values for the constraints.
Games.initialize_sg_hpl
— Method.initialize_sg_hpl(nH, o, r)
Initializes subgradients, extreme points and hyperplane levels for the approximation of the convex value set of a 2 player repeated game.
Arguments
nH::Int
: Number of subgradients used for the approximation.o::Vector{Float64}
: Origin for the approximation.r::Float64
: Radius for the approximation.
Returns
C::Vector{Float64}
: Vector of lengthnH
containing the hyperplane levels.H::Matrix{Float64}
: Matrix of shape(nH, 2)
containing the subgradients.Z::Matrix{Float64}
: Matrix of shape(nH, 2)
containing the extreme points of the value set.
Games.initialize_sg_hpl
— Method.initialize_sg_hpl(rpd, nH)
Initializes subgradients, extreme points and hyperplane levels for the approximation of the convex value set of a 2 player repeated game by choosing an appropriate origin and radius.
Arguments
rpd::RepeatedGame
: Two player repeated game.nH::Int
: Number of subgradients used for the approximation.
Returns
C::Vector{Float64}
: Vector of lengthnH
containing the hyperplane levels.H::Matrix{Float64}
: Matrix of shape(nH, 2)
containing the subgradients.Z::Matrix{Float64}
: Matrix of shape(nH, 2)
containing the extreme points of the value set.
Games.unitcircle
— Method.unitcircle(npts)
Places npts
equally spaced points along the 2 dimensional unit circle and returns the points with x coordinates in first column and y coordinates in second column.
Arguments
npts::Int
: Number of points to be placed.
Returns
pts::Matrix{Float64}
: Matrix of shape(nH, 2)
containing the coordinates of the points.